math-matrix-operation.html
            
                
                    
                        
                        * created: 2025-06-02T23:16
                        
                         
                        * modified: 2025-09-20T15:41
                        
                        
                    
                
                title
                Matrix operation
                description
                You can do math with the matrix.
                
             
            Arithmetic with matrices
Multiplying matrices
Multiplying matrices is only possible if the one matrix has as many columns as the second matrix has rows.
We multiply each element of each row of the first matrix by the corresponding element of each column of the second matrix, then sum these products.
We define:
A := 
\begin{bmatrix}
1 & -1 & 2 \\
-2 & 0 & 6 
\end{bmatrix}
, \;
B := 
\begin{bmatrix}
1 & -2 \\
4 & 5 \\ 
-3 & 7  
\end{bmatrix}
\; \text{and} \;
C := 
\begin{bmatrix}
9 \\
4 \\ 
7  
\end{bmatrix}
To calculate A \cdot B:
$$
X =
\begin{bmatrix}
1 \cdot 1 + -1 \cdot 4 + 2 \cdot -3 & 1 \cdot -2 + -1 \cdot 5 + 2 \cdot 7 \
-2 \cdot 1 + 0 \cdot 4 + 6 \cdot -3 & -2 \cdot -2 + 0 \cdot 5 + 6 \cdot 7
\end{bmatrix}
\begin{bmatrix}
-9 & 7 \
-20 & 46
\end{bmatrix}
$$
The resulting matrix has 2\times2 dimensions.
To calculate B \cdot A:
$$
X =
\begin{bmatrix}
1 \cdot 1 + -2 \cdot -2  &  1 \cdot -1 + -2 \cdot 0 & 1 \cdot 2 + -2 \cdot 6 \
4 \cdot 1 + 5 \cdot -2 & 4 \cdot -1 + 5 \cdot 0 & 4 \cdot 2 + 5 \cdot 6 \
-3 \cdot 1 + 7 \cdot -2 & -3 \cdot -1 + 0 \cdot 7 & -3 \cdot 2 + 7 \cdot 6 \
\end{bmatrix}
\begin{bmatrix}
5 & -1 & -10 \
-6 & -4 & 38 \
-17 & 3 & 36
\end{bmatrix}
$$
The resulting matrix has 3 \times 3 dimensions.